
PARTITIONING HYPERGRAPHS IN SCIENTIFIC COMPUTING
APPLICATIONS THROUGH VERTEX SEPARATORS ON GRAPHS

ENVER KAYAASLAN∗, ALI PINAR† , ÜMIT ÇATALYÜREK‡ , AND CEVDET AYKANAT§

Abstract. The modeling flexibility provided by hypergraphs has drawn a lot of interest from
the combinatorial scientific community, leading to novel models and algorithms, their applications,
and development of associated tools. Hypergraphs are now a standard tool in combinatorial scien-
tific computing. The modeling flexibility of hypergraphs however, comes at a cost: algorithms on
hypergraphs are inherently more complicated than those on graphs, which sometimes translates to
nontrivial increases in processing times. Neither the modeling flexibility of hypergraphs, nor the
runtime efficiency of graph algorithms can be overlooked. Therefore, the new research thrust should
be how to cleverly trade-off between the two. This work addresses one method for this trade-off by
solving the hypergraph partitioning problem by finding vertex separators on graphs. Specifically, we
investigate how to solve the hypergraph partitioning problem by seeking a vertex separator on its
net intersection graph (NIG), where each net of the hypergraph is represented by a vertex, and two
vertices share an edge if their nets have a common vertex. We propose a vertex-weighting scheme
to attain good node-balanced hypergraphs, since the NIG model cannot preserve node balancing
information. Vertex-removal and vertex-splitting techniques are described to optimize cutnet and
connectivity metrics, respectively, under the recursive bipartitioning paradigm. We also developed
implementations of our proposed hypergraph partitioning formulations by adopting and modifying
a state-of-the-art graph partitioning by vertex separator tool onmetis. Experiments conducted on a
large collection of sparse matrices demonstrate the effectiveness of our proposed techniques.

Key words. hypergraph partitioning; combinatorial scientific computing; graph partitioning by
vertex separator; sparse matrices.

AMS subject classifications.

1. Introduction. A hypergraph is a generalization of a graph, since it replaces
edges that connect only two vertices, with hyperedges (nets) that can connect multiple
vertices. This generalization provides a critical modeling flexibility that allows accu-
rate formulation of many important problems in combinatorial scientific computing.
After their introduction in [7, 38], the modeling power of hypergraphs appealed to
many researchers and they were applied to a wide variety of many applications in scien-
tific computing [1, 4, 6, 8, 10, 11, 12, 14, 19, 29, 30, 33, 44, 45, 48, 49, 50, 51, 52, 53, 54].
Hypergraphs and hypergraph partitioning are now standard tools of combinatorial sci-
entific computing. Increasing popularity of hypergraphs has been accompanied with
the development of effective hypergraph partitioning (HP) tools: wide applicability
of hypergraphs motivated development of fast HP tools, and availability of effective
HP tools motivated further applications. This virtuous cycle produced sequential HP
tools such as hMeTiS [28], PaToH [9] and Mondriaan [52], and parallel HP tools such

∗Computer Engineering Department, Bilkent University, Ankara, Turkey
(enver@cs.bilkent.edu.tr),
†Sandia National Laboratories, Livermore, CA (apinar@sandia.gov). The work of this author is

funded by the applied mathematics program at the United States Department of Energy and per-
formed at Sandia National Laboratories, a multiprogram laboratory operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of
Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
‡Departments of Biomedical Informatics and Electrical & Computer Engineering, The Ohio State

University (umit@bmi.osu.edu). This work of this author is partially supported by the U.S. DOE
SciDAC Institute Grant DE-FC02-06ER2775 and by the U.S. National Science Foundation under
Grants CNS-0643969, OCI-0904809, and OCI-0904802.
§Computer Engineering Department, Bilkent University, Ankara, Turkey

(aykanat@cs.bilkent.edu.tr).

1

2

as Parkway [46] and Zoltan [18], all of which adopt the multilevel framework success-
fully. While these tools provide good performances both in terms of solution quality
and processing times, they are hindered by the inherent complexity of dealing with
hypergraphs. Algorithms on hypergraphs are more difficult both in terms of compu-
tational complexity and runtime performance, since operations on nets are performed
on sets of vertices as opposed to pairs of vertices as in graphs. The wide interest over
the last decade has proven the modeling flexibility of hypergraphs to be essential, but
the runtime efficiency of graph algorithms cannot be overlooked, either. Therefore,
we believe that the new research thrust should be how to cleverly trade-off between
the modeling flexibility of hypergraphs and the practicality of graphs.

How can we solve problems that are most accurately modeled with hypergraphs
using graph algorithms without sacrificing too much from what is really important
for the application? This question has been asked before, and the motivation was
either theoretical [25] or practical [13, 24] when the absence of HP tools behest these
attempts. This earlier body of work investigated the relation between HP and graph
partitioning by edge separator (GPES), and achieved little success. Today, we are
facing a more difficult task, as effectiveness of available HP tools sets high standards
for novel approaches. On the other hand, we can draw upon the progress on related
problems, in particular the advances in tools for graph partitioning by vertex separator
(GPVS), which is the main theme of this work.

We investigate solving the HP problem by finding vertex separators on the net
intersection graph (NIG) of the hypergraph. In the NIG of a hypergraph, each net
is represented by a vertex and each vertex of the hypergraph is replaced with a
clique of the nets connecting that vertex. A vertex separator on this graph defines
a net separator for the hypergraph. This model has been initially studied for circuit
partitioning [2]. While faster algorithms can be designed to find vertex separators on
graphs, the NIG model has the drawback of attaining unbalanced partitions. Once
vertices of the hypergraphs are replaced with cliques, it will be impossible to preserve
the vertex weight information accurately. Therefore, we can view the NIG model as
a way to trade off computational efficiency with exact modeling power.

What motivates us to investigate NIGs to solve HP problems arising in scientific
computing applications is that in many applications, definition of balance cannot
be very precise [3, 37, 38] or there are additional constraints that cannot be easily
incorporated into partitioning algorithms and tools [40]; or partitioning is used as part
of a divide-and-conquer algorithm [39]. For instance, hypergraph models can be used
to permute a linear program (LP) constraint matrix to a block angular form for parallel
solution with decomposition methods. Load balance can be achieved by balancing
subproblems during partitioning. However, it is not possible to accurately predict
solution time of an LP, and equal sized subproblems only increase the likelihood of
computational balance. Hypergraph models have recently been used to find null-space
bases that have a sparse inverse [39]. This application requires finding a column-space
basis B as a submatrix of a sparse matrix A , so that B−1 is sparse. Choosing B to
have a block angular form limits the fill in B−1 , but merely a block angular form for
B will not be sufficient, since B has to be nonsingular to be a column-space basis
for A . Enforcing numerical or even structural nonsingularity of subblocks during
partitioning is a nontrivial task, if at all possible, and thus partitioning is used as
part of a divide-and-conquer paradigm, where the partitioning phase is followed by a
correction phase, if subblocks are non-singular. Both of these cases present examples
of applications, where hypergraphs provide effective models, but balance among parts

Hypergraph Partitioning via GPVS 3

is only weakly defined. As we will show in the experiments, the NIG model can
effectively be employed for these applications to achieve high quality solutions in a
shorter time. We show that it is easy to enforce a balance criterion on the internal nets
of hypergraph partitioning by enforcing vertex balancing during the partitioning of
the NIG. However, the NIG model cannot completely preserve the vertex balancing
information of the hypergraph. We propose a weighting scheme in NIG, which is
quite effective in attaining fairly vertex-balanced partitions of the hypergraph. The
proposed vertex balancing scheme for the NIG partitioning can be easily enhanced to
improve the balancing quality of the hypergraph partitions in a simple post-processing
phase.

The recursive bipartitioning (RB) paradigm is widely used for multiway HP and
known to produce good solution qualities [9, 28]. At each RB step, cutnet removal
and cutnet splitting techniques [8] are adopted to optimize the cutsize according
to the cutnet and connectivity metrics, respectively, which are the most commonly
used cutsize metrics in scientific and parallel computing [3, 8] as well as VLSI layout
design [2, 36]. In this paper, we propose separator-vertex removal and separator-vertex
splitting techniques for RB-based partitioning of the NIG, which exactly correspond
to the cutnet removal and cutnet splitting techniques, respectively. We also propose
an implementation for our GPVS-based HP formulations by adopting and modifying
a state-of-the-art GPVS tool used in fill-reducing sparse matrix ordering.

2. Preliminaries. In this section, we will provide the basic definitions and tech-
niques that will be adopted in the remainder of this paper.

2.1. Graph Partitioning. An undirected graph G = (V, E) is defined as a set
V of vertices and a set E of edges. Every edge eij ∈ E connects a pair of distinct
vertices vi and vj . We use the notation Adj(vi) to denote the set of vertices adjacent
to vertex vi . We extend this operator to include the adjacency set of a vertex subset
V ′ ⊂ V , i.e., Adj(V ′) = {vj ∈ V−V ′ : vj ∈ Adj(vi) for some vi ∈ V ′} . Two disjoint
vertex subsets Vk and V` are said to be adjacent if Adj(Vk) ∩ V` 6= ∅ (equivalently
Adj(V`) ∩ Vk 6= ∅) and non-adjacent otherwise. The degree d(vi) of a vertex vi is
equal to the number of edges incident to vi , i.e., d(vi)= |Adj(vi)| . A weight w(vi) ≥ 0
is associated with each vertex vi .

An edge subset ES is a K -way edge separator if its removal disconnects the
graph into at least K connected components. That is, ΠES(G)={V1,V2, . . . ,VK} is
a K -way vertex partition of G by edge separator ES⊂E if each part Vk is non-empty;
parts are pairwise disjoint; and the union of parts gives V . Edges between the vertices
of different parts belong to ES , and are called cut (external) edges and all other edges
are called uncut (internal) edges.

A vertex subset VS is a K -way vertex separator if the subgraph induced by
the vertices in V−VS has at least K connected components. That is, ΠV S(G) =
{V1,V2, . . . ,VK ;VS} is a K -way vertex partition of G by vertex separator VS⊂V if
each part Vk is non-empty; all parts and the separator are pairwise disjoint; parts
are pairwise non-adjacent; and the union of parts and the separator gives V . The
non-adjacency of the parts implies that Adj(Vk)⊆VS for each Vk . The connectivity
λ(vi) of a vertex vi denotes the number of parts connected by vi , where a vertex
that is adjacent to any vertex in a part is said to connect that part. A vertex vi∈Vk
is said to be a boundary vertex of part Vk if it is adjacent to any vertex in VS . A
vertex separator is said to be narrow if no subset of it forms a separator, and wide
otherwise.

4

The objective of graph partitioning is finding a separator of smallest size subject
to a given balance criterion on the weights of the K parts. The weight W (Vk) of a
part Vk is defined as the sum of the weights of the vertices in Vk , i.e.,

W (Vk) =
∑

vi∈Vk

w(vi) (2.1)

and the balance criterion is defined as

max
1≤k≤K

W (Vk) ≤ (1 + ε)Wavg , where (2.2)

Wavg =

∑K
k=1W (Vk)

K
.

Here, Wavg is the weight each part must have in the case of perfect balance, and ε
is the maximum imbalance ratio allowed. We proceed with formal definitions for the
GPES and GPVS problems, both of which are known to be NP-hard [5].

Definition 2.1 (Problem GPES). Given a graph G = (V, E) , an integer K ,
and a maximum allowable imbalance ratio ε . The GPES problem is finding a K-way
vertex partition ΠES(G) = {V1,V2, . . . ,VK} of G by edge separator ES that satisfies
the balance criterion given in (2.2) while minimizing the cutsize, which is defined as

cutsize(ΠES) =
∑

eij∈ES

c(eij), (2.3)

where c(eij) ≥ 0 is the cost of edge eij = (vi, vj).
Definition 2.2 (Problem GPVS). Given a graph G=(V, E) , an integer K , and

a maximum allowable imbalance ratio ε . The GPVS problem is finding a K-way vertex
partition ΠV S(G)={V1,V2, . . . ,VK ;VS} of G by vertex separator VS that satisfies the
balance criterion given in (2.2) while minimizing the cutsize, which is defined as one
of

a) cutsize(ΠV S) =
∑

vi∈VS

c(vi) (2.4)

b) cutsize(ΠV S) =
∑

vi∈VS

c(vi)(λ(vi)− 1) (2.5)

where c(vi) ≥ 0 is the cost of vertex vi .
In the cutsize definition given in (2.4), each separator vertex incurs its cost to the

cutsize, whereas in (2.5), the connectivity of a vertex is considered while incurring its
cost to the cutsize. In the general GPVS definition given above, both a weight and
a cost are associated with each vertex. The weights are used in computing loads of
parts for balancing, whereas the costs are utilized in computing the cutsize. In the
standard GPVS definitions in the literature, the weights and costs of the vertices are
taken as identical. The reason for our general GPVS definition will become clear in
Section 3.

The techniques for solving GPES and GPVS problems are closely related. An
indirect approach to solve the GPVS problem is to first find an edge separator through
GPES, and then translate it to any vertex separator. After finding an edge separator,
this approach takes vertices adjacent to separator edges as a wide separator to be

Hypergraph Partitioning via GPVS 5

refined to a narrow separator, with the assumption that a small edge separator is
likely to yield a small vertex separator. The wide-to-narrow refinement problem [42]
is described as a minimum vertex cover problem on the bipartite graph induced by
the cut edges. A minimum vertex cover can be taken as a narrow separator for the
whole graph, because each cut edge will be adjacent to a vertex in the vertex cover.

2.2. Hypergraph Partitioning. A hypergraph H=(U ,N) is defined as a set
U of nodes (vertices) and a set N of nets among those vertices. We refer to the vertices
of H as nodes, to avoid the confusion between graphs and hypergraphs. Every net
ni ∈ N connects a subset of nodes, i.e., ni⊆U . The nodes connected by a net ni are
called pins of ni and denoted as Pins(ni). We extend this operator to include the
pin list of a net subset N ′ ⊂N , i.e., Pins(N ′) =

⋃
ni∈N ′ Pins(ni). The size s(ni)

of a net ni is equal to the number of its pins, i.e., s(ni) = |Pins(ni)| . The set of
nets that connect a node uj is denoted as Nets(uj). We also extend this operator
to include the net list of a node subset U ′ ⊂ U , i.e., Nets(U ′) =

⋃
uj∈U ′ Nets(uj).

The degree d(uj) of a node uj is equal to the number of nets that connect uj ,
i.e., d(uj) = |Nets(uj)| . The total number of pins, p , denotes the size of H where
p=
∑

ni∈N s(ni)=
∑

uj∈U d(uj). A graph is a special hypergraph such that each net

has exactly two pins. A weight w(uj) is associated with each node uj , whereas a
cost c(ni) is associated with each net ni . A weight w(ni) can also be associated with
each net ni as we will discuss later in this section.

A net subset NS is a K -way net separator if its removal disconnects the hyper-
graph into at least K connected components. That is, ΠU (H)={U1,U2, . . . ,UK} is a
K -way node partition of H by net separator NS⊂N if each part Uk is non-empty;
parts are pairwise disjoint; and the union of parts gives U . In a partition ΠU (H), a
net that connects any node in a part is said to connect that part. The connectivity
λ(ni) of a net ni denotes the number of parts connected by ni . Nets connecting mul-
tiple parts belong to NS , and are called cut (external) (i.e., λ(ni) > 1), and uncut
(internal) otherwise (i.e., λ(ni) = 1). The set of internal nets of a part Uk is denoted
as Nk , for k = 1, . . . ,K . So, although ΠU (H) is defined as a K -way partition on
the node set of H , it can also be considered as inducing a (K+1)-way partition
ΠN (H) = {N1, . . . ,NK ;NS} on the net set.

As in the GPES and GPVS problems, the objective of the HP problem is finding
a net separator of smallest size subject to a given balance criterion on the weights of
the K parts. The weight W (Uk) of a part Uk is defined either as the sum of the
weights of nodes in Uk , i.e.,

W (Uk) =
∑

uj∈Uk

w(uj) (2.6)

or as the sum of weights of internal nets of part Uk , i.e.,

W (Uk) =
∑

ni∈Nk

w(ni). (2.7)

The former and latter part-weight computation schemes together with the load bal-
ancing criterion given in (2.2) will be referred to here as node and net balancing,
respectively. We proceed with a formal definition for the HP problem, which is also
known to be NP-hard [36].

Definition 2.3 (Problem HP). Given a hypergraph H=(U ,N) , an integer K ,
and a maximum allowable imbalance ratio ε . The HP problem is finding a K-way node

6

partition ΠU (H)={U1,U2, . . . ,UK} of H that satisfies the balance criterion given in
(2.2) while minimizing the cutsize, which is defined as one of

a) cutsize(ΠU) =
∑

ni∈NS

c(ni) (2.8)

b) cutsize(ΠU) =
∑

ni∈NS

c(ni)(λ(ni)− 1). (2.9)

The cutsize metrics given in (2.8) and (2.9) are referred to as the cut-net and connec-
tivity metrics, respectively, [8, 12, 36].

3. Formulating the HP Problem as a GPVS Problem. In this section,
we first review the previous work on alternative models for solving the HP problem.
Then, we describe our novel and accurate GPVS-based formulations and present the
relation between HP and GPVS problems from a matrix theoretical view. Finally, we
present our implementation based on adapting a state-of-the-art GPVS tool.

3.1. Alternative Models for Solving the HP Problem. As indicated in the
survey by Alpert and Kahng [2], hypergraphs are commonly used to represent circuit
netlist connections in solving the circuit partitioning and placement problems in VLSI
layout design. The circuit partitioning problem is to divide a system specification into
clusters to minimize inter-cluster connections. Other circuit representation models
were also proposed and used in the VLSI literature including dual hypergraph, clique-
net graph (CNG) and net-intersection graph (NIG) [2]. Hypergraphs represent circuits
in a natural way so that the circuit partitioning problem is directly described as an HP
problem. Thus, these alternative models can be considered as alternative approaches
for solving the HP problem.

The dual of a hypergraph H = (U ,N) is defined as a hypergraph H′ , where
the nodes and nets of H become, respectively, the nets and nodes of H′ . That
is, H′ = (U ′,N ′) with Nets(u′i) = Pins(ni) for each u′i ∈ U ′ and ni ∈ N , and
Pins(n′j)=Nets(uj) for each n′j ∈N ′ and uj ∈U .

In the CNG model, the vertex set of the target graph is equal to the node set of
the given hypergraph. Each net of the given hypergraph is represented by a clique
of vertices corresponding to its pins. The multiple edges between two vertices are
contracted into a single edge, the cost of which is set equal to the sum of the cost
of the edges it represents. If an edge is in the cut set of a GPES then all nets
represented by this edge are in the cut set of HP. Ideally, no matter how nodes of a
net are partitioned, the contribution of a cut net to the cutsize should always be one
in a bipartition when unit net costs are assumed. However, the deficiency of the CNG
representation is that it is impossible to achieve such a perfect edge-cost assignment
of the edges as proved by Ihler et al. [25].

In the NIG representation G = (V, E) of a given hypergraph H = (U ,N), each
vertex vi of G corresponds to net ni of H , and we will use notation vi ≡ ni to
represent this correspondence. Two vertices vi, vj ∈V of G are adjacent if and only
if respective nets ni, nj ∈N of H share at least one pin, i.e., eij ∈ E if and only if
Pins(ni) ∩ Pins(nj) 6= ∅ . So,

Adj(vi) = {vj ≡ nj | nj ∈ N and Pins(ni) ∩ Pins(nj) 6= ∅}. (3.1)

Note that for a given hypergraph H , NIG G is well-defined, however there is no
unique reverse construction [2]. Figures 3.1(a) and 3.1(b), respectively, display a

Hypergraph Partitioning via GPVS 7

n5 n1

n2

n12

n10

n6

n14

n8

n7n11

u1

u18

u14

u2

u13u11

u15

u3

u6

u4

u10 u12

u9

u16

u8

n4

n9

n15

u17

u7

n3

u5

n13

(a)

v5

v9

v4

v2

v11

v13v6

v15

v12

v3

v8

v14

v1

v10

v7

(b)

Fig. 3.1. (a) A sample hypergraph H and (b) the corresponding NIG representation G .

sample hypergraph H and the corresponding NIG representation G . In the figure,
the sample hypergraph H contains 18 nodes and 15 nets, whereas the corresponding
NIG G contains 15 vertices and 30 edges.

Both dual hypergraph and NIG models view the HP problem in terms of parti-
tioning nets instead of nodes. Kahng [26] and Cong, Hagen, and Kahng [15] exploited
this perspective of the NIG model to formulate the hypergraph bipartitioning problem
as a two-stage process. In the first stage, nets of H are bipartitioned through 2-way
GPES of its NIG G . The resulting net bipartition induces a partial node bipartition
on H , because only the nodes (pins) that are connected by the nets on one side of
the bipartition can be unambiguously assigned to that side. However, other nodes
may be connected by the nets on both sides of the bipartition. Thus, the second
stage involves finding the best completion of the partial node bipartition; i.e., a part
assignment for the shared nodes such that the cutsize is minimized. This problem is
known as the module (node) contention problem in the VLSI community. Kahng [26]
used a winner-loser heuristic [23], whereas Cong et al. [15] used a matching-based
(IG-match) algorithm for solving the 2-way module contention problem optimally.
Cong, Labio, and Shivakumar [16] extended this approach to K -way HP through us-
ing the dual hypergraph model. In the first stage, a K -way net partition is obtained
through partitioning the dual hypergraph. For the second stage, they formulated the
K -way module contention problem as a min-cost max-flow problem through defining
binding factors between nodes and nets, and a preference function between parts and
nodes.

Here, we reveal the fact that the module contention problem encountered in the
second stage of the NIG-based hypergraph bipartitioning approaches [15, 26] is similar
to the wide-to-narrow separator refinement problem encountered in the second stage of
the indirect GPVS approaches widely used in nested-dissection based low-fill orderings
for sparse matrix factorization. The module contention and separator refinement al-
gorithms effectively work on the bipartite graph induced by the cut edges of a two-way

8

GPES of the NIG representation of hypergraphs and the standard graph representa-
tion of sparse matrices, respectively. The winner-loser assignment heuristic [23, 26]
used by Kahng [26] is very similar to the minimum-recovery heuristic proposed by
Leiserson and Lewis [35] for separator refinement. Similarly, the IG-match algorithm
proposed by Cong et al. [15] is similar to the maximum-matching based minimum
vertex-cover algorithm [34, 41] used by Pothen, Simon, and Liou [42] for separator re-
finement. While not explicitly stated in the literature, these net-bipartitioning-based
HP algorithms using the NIG model can be viewed as trying to solve the HP problem
through an indirect GPVS of the NIG representation.

More recently, Trifunovic and Knottenbelt [47] proposed a coloring-based graph
model for partitioning the special type of hypergraphs which arises in fine-grain
(nonzero-based) partitioning of sparse matrices [12, 10] for parallel matrix vector
multiply. In such hypergraphs, each vertex is connected by exactly two nets and
their dual hypergraphs are bipartite graphs. A K -way edge coloring on this bipartite
graph is decoded as a K -way partitioning of the nodes (nonzeros) of the original hy-
pergraph. The coloring objective, which is defined in terms of the number of distinct
colors incident to the vertices, correctly models the total interprocessor communica-
tion volume. Since the connectivity cutsize metric of (2.9) also correctly models the
total interprocessor communication volume, the coloring objective exactly models the
connectivity cutsize metric. Although this model is proposed for the special type of
hypergraphs in which each node is connected by exactly two nets, the model easily
extends to more general hypergraphs where nodes are connected by arbitrary number
of nets.

3.2. An Accurate Formulation of HP as GPVS on the NIG Model.
We propose a net-partitioning based K -way HP algorithm that avoids the module
contention problem (which we will also refer to as contention-free) by describing the
HP problem as a GPVS problem through the NIG model. The following theorem
lays down the basis for our GPVS-based HP formulation. Let G = (V, E) denote the
NIG of a given hypergraph H = (U ,N). The cost of each net ni of H is assigned
as the cost of the respective vertex vi of G , i.e., c(vi) = c(ni). For brevity of the
presentation we assume unit net costs here, but all proposed models and methods
generalize to hypergraphs with non-unit net costs.

Theorem 1. A K -way vertex partition ΠV S(G) = {V1, . . . ,VK ;VS} of G by a
narrow vertex separator VS induces a K -way contention-free net partition ΠN (H) =
{N1 ≡ V1,N2 ≡ V2, . . . ,NK ≡ VK ;NS ≡ VS} of H by a net separator NS .

Proof. By definition of GPVS, we have Adj(Vk) ∩ V` = ∅ for 1 ≤ k < ` ≤ K .
This implies that Pins(Nk) ∩ Pins(N`) = ∅ for 1 ≤ k < ` ≤K , because if any two
nets ni ∈ Nk and nj ∈ N` shared at least one pin, then there would be an edge
eij between vertices vi ∈ Vk and vj ∈ V` of G , which would correspond to an edge
between parts Vk and V` of ΠV S(G) contradicting the definition of GPVS. Therefore,
any two nets belonging to two different net parts do not share any pin, thus ensuring
the contention-free property of the net partition ΠN (H).

Corollary 1. A K-way contention-free net partition ofH by a net separatorNS

ΠN (H) = {N1≡V1, . . . ,NK≡VK ;NS≡VS} (3.2)

induces a K -way partial node partition

Π′U (H) = {U ′1 =Pins(N1) , . . . , U ′K =Pins(NK)}. (3.3)

Hypergraph Partitioning via GPVS 9

v5

v9

v4

V1 v2

v11

v13

v6

v15

v12

v3

v8

V2
VS

V3

v14

v1 v10

v7

(a)

U3

U1

n5
n1 n2

n12

n10

n6

n14

n8

n7
n11

u1

u18

u14

u2

u13

u11

u15

u3

U2

u6

u4

u10

u12

u9

u16

u8
n4
n9

n15

u17
u7

n3

u5

n13

(b)

Fig. 3.2. (a) A 3-way GPVS of the sample NIG given in Figure 3.1(b) and (b) corresponding
partitioning of the hypergraph.

Let UF denote the set of remaining nodes. Note that UF also corresponds to the
set of nodes that are only connected by the nets of the separator NS . That is,

UF = U −
K⋃

k=1

U ′k = {ui ∈ U : Nets(ui) ⊆ NS ≡ VS}. (3.4)

The nodes in UF will be referred to here as free nodes.
Figure 3.2(a) shows a 3-way GPVS ΠV S(G) of the sample NIG G given in Fig-

ure 3.1(b). Figure 3.2(b) shows the 3-way partial and complete node partition Π′U (H)
of the sample H , which is induced by ΠV S(G). Partial node partition is displayed
with nodes drawn with solid lines, and complete node partition is achieved by adding
2 free nodes (drawn with dashed lines). The sample H given in Figure 3.1(a) contains
only 2 free nodes, which are u17 and u18 . Comparison of Figures 3.2(a) and 3.2(b)
illustrates that the separator vertices v1, v8 and v15 of ΠV S(G) induce the cut nets
n1, n8 , and n15 of Π′U (H), respectively.

For any arbitrary assignment of free nodes, we can construct a complete node
partition in the following form,

ΠU (H) = {U1 ⊇ U ′1,U2 ⊇ U ′2, . . . ,UK ⊇ U ′K}. (3.5)

Note that any K -way node partition of H inducing the (K+1)-way net partition
ΠN (H) has to be in the form above.

Lemma 1. Given a K -way vertex partition ΠV S(G) of G , VS is a narrow
separator if and only if every vertex vs∈VS connects at least 2 parts, i.e., λ(vs) ≥ 2 .

Proof. Suppose that there is a vertex vs∈VS with λ(vs)<2. If λ(vs)=1, we can
place vs to the part Vk that vs connects, otherwise we can place vs to any part Vk .
Since Adj(vs) ⊆ Vk∪VS , VS−vs is a valid separator. Thus, VS is not narrow.

If VS is not narrow, there exists a strict subset V ′S ⊂ VS that forms a valid
separator. Consider a vertex vs ∈ VS−V ′S . Assume that λ(vs)≥2. This implies that

10

there are two vertex parts in which there is a vertex adjacent to vs . This contradicts
with the pairwise non-adjacency implied by the definition of the vertex partition with
vertex separator and thus validity of the separator. Thus, λ(vs)<2.

Theorem 2. Given a K -way vertex partition ΠV S(G) of G by a narrow vertex
separator VS , any node partition ΠU (H) of H as constructed according to (3.5) in-
duces the (K+1)-way net partition ΠN (H) = {N1≡V1, . . . ,NK≡VK ;NS≡VS} such
that the connectivity of each cut net in NS is greater than or equal to the connectivity
of the corresponding separator vertex in VS .

Proof. Let ΠU (H) be a node partition constructed as in (3.5). We first argue
about the internal nets of ΠU (H). Consider a vertex vi ∈ Vk of ΠV S(G). Since
Pins(ni)⊆Uk , ni will be an internal net of node part Uk for ΠU (H), thus ni∈Nk .

Now we focus on cut nets. Consider a separator vertex vs ∈ VS and let vs be
adjacent to a vertex vi ∈ Vi . Then there should be a node uj ∈U that is connected
by both ns and ni . Since ni ∈Ni and uj ∈ Pins(ni), construction in (3.5) places
uj into Ui and thus ns connects Ui . It is worth noting that the connectivity of ns
may be greater than the connectivity of vs only due to the assignment of the free
nodes. As VS is a narrow separator, for any separator vertex vs∈VS , λ(vs)≥2 and
correspondingly λ(ns)≥2 and thus ns∈NS .

Corollary 2. Given a K -way vertex partition ΠV S(G) of G by a narrow vertex
separator VS , the separator size of ΠV S(G) is equal to the cutsize of node partition
ΠU (H) induced by ΠV S(G) according to the cutnet metric, whereas the separator size
of ΠV S(G) approximates the cutsize of node partition ΠU (H) induced by ΠV S(G)
according to the connectivity metric.

Comparison of Figures 3.2(a) and 3.2(b) illustrates that the connectivities of sep-
arator vertices in ΠV S are exactly equal to those of the cut nets of induced partial
node partition Π′U (H). Figure 3.2(b) shows a 3-way complete node partition ΠU (H)
obtained by assigning the free nodes (shown with dashed lines) u17 and u18 to parts
U3 and U1 , respectively. This free node assignment does not increase the connec-
tivities of the cut nets. However a different free node assignment might increase the
connectivities of the cut nets. For example, assigning free node u17 to part U2 instead
of U3 will increase the connectivity of net n15 by 1.

3.2.1. Recursive-bipartitioning-based partitioning. In the recursive bipar-
titioning (RB) paradigm, a hypergraph is first partitioned into 2 parts. Then, each
part of the bipartition is further bipartitioned recursively until the desired number of
parts, K is achieved. The following corollary forms the basis for the use of RB-based
GPVS for RB-based HP according to the connectivity and the cut-net metrics.

Corollary 3. Let ΠV S(G) = {V1,V2;VS} be a partition of G by a vertex sep-
arator VS , and let ΠU (H) = {U1,U2} be a node partition of H that induces the net
partition ΠN (H) = {N1 ≡ V1,N2 ≡ V2;NS ≡ VS} . The connectivity of a net ni in
ΠU (H) is equal to the connectivity of the corresponding vertex vi in ΠV S(G) .

Separator-vertex removal: In RB-based multiway HP, the cut-net metric is formu-
lated by cut-net removal after each RB step. In this method, after each hypergraph
bipartitioning step, each cut net is discarded from further RB steps. That is, a node
bipartition ΠU (H) = {U1,U2} of the current hypergraph H , which induces the net
bipartition ΠN (H) = {N1,N2;NS} , is decoded as generating two sub-hypergraphs
H1 = (U1,N1) and H2 = (U2,N2) for further RB steps. Hence, the total cutsize of
the resulting multiway partition of H according to the cut-net metric will be equal
to the sum of the number of cut nets of the bipartition obtained at each RB step.

Hypergraph Partitioning via GPVS 11

The cut-net metric can be formulated in the RB-GPVS-based multiway HP by
separator-vertex removal so that each separator vertex is discarded from further RB
steps. That is, at each RB step, a 2-way vertex separator ΠV S(G) = {V1,V2;VS} of
G is decoded as generating two sub-graphs G1 = (V1, E1) and G2 = (V2, E2), where
E1 and E2 denote the internal edges of vertex parts V1 and V2 , respectively. In other
words, G1 and G2 are the sub-graphs of G induced by the vertex parts V1 and V2 ,
respectively. G1 and G2 constructed in this way become the NIG representations of
hypergraphs H1 and H2 , respectively. Hence, the sum of the number of separator
vertices of the 2-way GPVS obtained at each RB step will be equal to the total cutsize
of the resulting multiway partition of H according to the cut-net metric.

Separator-vertex splitting: In RB-based multiway HP, the connectivity metric
is formulated by adapting the cut-net splitting method after each RB step. In
this method, each RB step, ΠU (H) = {U1,U2} is decoded as generating two sub-
hypergraphs H1 = (U1,N1) and H2 = (U2,N2) as in the cut-net removal method.
Then, each cut net ns of ΠU (H) is split into two pin-wise disjoint nets n1s and n2s
with Pins(n1s) = Pins(ns) ∩ U1 and Pins(n2s) = Pins(ns) ∩ U2 , where n1s and n2s
are added to the net lists of H1 and H2 , respectively. In this way, the total cutsize
of the resulting multiway partition according to the connectivity metric will be equal
to the sum of the number of cut nets of the bipartition obtained at each RB step [8].

The connectivity metric can be formulated in the RB-GPVS-based multiway HP
by separator-vertex splitting, which is not as easy as the separator-vertex removal
method and it needs special attention. In a straightforward implementation of this
method, a 2-way vertex separator ΠV S(G) = {V1,V2;VS} is decoded as generating
two subgraphs G1 and G2 which are the sub-graphs of G induced by the vertex sets
V1 ∪ VS and V2 ∪ VS , respectively. That is, each separator vertex vs ∈ VS is split
into two vertices v1s and v2s with Adj(v1s) = Adj(vs) ∩ (V1 ∪ VS) and Adj(v2s) =
Adj(vs) ∩ (V2 ∪ VS). Then, the split vertices v1s and v2s are added to the subgraphs
(V1, E1) and (V2, E2) to form G1 and G2 , respectively.

This straightforward implementation of the separator-vertex splitting method can
be overcautious because of the unnecessary replication of separator edges in both
subgraphs G1 and G2 . Here an edge is said to be a separator edge if two vertices
connected by the edge are both in the separator VS . Consider a separator edge
(vs1 , vs2) ∈ E in a given bipartition ΠV S(G) = {V1,V2;VS} of G , where ΠU (H) =
{U1,U2} is a bipartition of H induced by ΠV S(G) according to the construction given
in (3.5). If both U1 and U2 contain at least one node that induces the separator edge
(vs1 , vs2) of G then the replication of (vs1 , vs2) in both subgraphs G1 and G2 is
necessary. If, however, all hypergraph nodes that induce the edge (vs1 , vs2) of G
remain in only one part of ΠU (H) then the replication of (vs1 , vs2) on the graph
corresponding to the other part is unnecessary. For example, if all nodes connected
by both nets ns1 and ns2 of H remain in U1 of ΠU (H) then the edge (vs1 , vs2)
should be replicated in only G1 . G1 and G2 constructed in this way become the
NIG representations of hypergraphs H1 and H2 , respectively. Hence, the sum of the
number of separator vertices of the 2-way GPVS obtained at each RB step will be
equal to the total cutsize of the resulting multiway partition of H according to the
connectivity metric.

Figure 3.3 illustrates three separator vertices vs1 , vs2 and vs3 in a 2-way vertex
separator and their splits into vertices v1s1 ,v1s2 ,v1s3 and v2s1 ,v2s2 ,v2s3 . The three sepa-
rator vertices vs1 , vs2 and vs3 are connected with each other by three separator edges

12

vs2

vs1

vs3

VS

V1/U1 V2/U2
ux

uz ut

uy

ux

uz ut

uy

vs1
1 vs1

2

vs3
2vs2

2vs3
1vs2

1

Split

Fig. 3.3. Separator-vertex splitting.

(vs1 , vs2), (vs1 , vs3) and (vs2 , vs3) in order to show three distinct cases of separator
edge replication in the accurate implementation. The figure also shows four hyper-
graph nodes ux ,uy ,uz and ut which induce the three separator edges, where ux ,uz
are assigned to part U1 and uy ,ut are assigned to part U2 . Since only ux induces
the separator edge (vs1 , vs2) and ux is assigned to U1 , it is sufficient to replicate the
separator edge (vs1 , vs2) in only V1 . Symmetrically, since only uy induces the sepa-
rator edge (vs1 , vs3) and uy is assigned to U2 , it is sufficient to replicate the separator
edge (vs1 , vs3) in only V2 . However, since uz and ut both induce the separator edge
(vs2 , vs3) and uz and ut are respectively assigned to U1 and U2 , it is necessary to
replicate the separator edge (vs2 , vs3) in both V1 and V2 .

This accurate implementation of the separator-vertex splitting method depends
on the availability of both H and its NIG representation G at the beginning of each
RB step. Hence, after each RB step, the sub-hypergraphs H1 and H2 should be
constructed as well as the subgraphs G1 and G2 . We briefly summarize the details
of the proposed implementation method performed at each RB step. A 2-way GPVS
is performed on G to obtain a vertex separator ΠV S(G). Then, a node biparti-
tion ΠU (H) of H is constructed according to (3.5) by decoding the vertex separator
ΠV S(G) of G . Then, the 2-way vertex separator ΠV S(G) is used together with the
node bipartition ΠU (H) to generate subgraphs G1 and G2 as described above. The
sub-hypergraphs H1 and H2 are also constructed for use in subsequent RB steps.
An alternative implementation could be first generating sub-hypergraphs H1 and H2

from ΠU (H) and then constructing subgraphs G1 and G2 from H1 and H2 , respec-
tively, using NIG construction. However, this alternative implementation method is
quite inefficient compared to the proposed implementation, since construction of the
NIG representation from a given hypergraph is computationally expensive.

3.2.2. Balancing constraint. Consider a node partition ΠU (H) = {U1,U2, . . . ,
UK} of H constructed from the vertex partitioning ΠV S(G) = {V1,V2, . . . ,VK ;VS}
of NIG G according to (3.5). Since the vertices of G correspond to the nets of the
given hypergraph H , it is easy to enforce a balance criterion on the nets of H by

Hypergraph Partitioning via GPVS 13

setting w(vi) = w(ni). For example, assuming unit net weights, the partitioning
constraint of balancing on the vertex counts of parts of ΠV S(G) infers balance among
the internal net counts of node parts of ΠU (H).

However, balance on the nodes of H cannot be directly enforced during the GPVS
of G , because the NIG model suffers from information loss on hypergraph nodes.
Here, we propose a vertex-weighting model for estimating the cumulative weight of
hypergraph nodes in each vertex part Vk of the vertex separator ΠV S(G). In this
model, the objective is to find appropriate weights for the vertices of G so that vertex-
part weight W (Vk) computed according to (2.1) approximates the node-part weight
W (Uk) computed according to (2.6).

The NIG model can also be viewed as a clique-node model since each node uh
of the hypergraph induces an edge between each pair of vertices corresponding to the
nets that connect uh . So, the edges of G implicitly represent the nodes of H . Each
hypergraph node uh of degree dh induces

(
dh

2

)
clique edges among which the weight

w(uh) is distributed evenly. That is, every clique edge induced by node uh can be
considered as having a uniform weight of w(uh)/

(
dh

2

)
. Multiple edges between the

same pair of vertices are collapsed into a single edge whose weight is equal to the sum
of the weights of its constituent edges. Hence, the weight w(eij) of each edge eij of
G becomes,

w(eij) =
∑

uh∈Pins(ni)∩Pins(nj)

w(uh)(
dh

2

) . (3.6)

Then, the weight of each edge is uniformly distributed between the pair of vertices
connected by that edge. That is, edge eij contributes w(eij)/2 to both vi and vj .
Hence, in the proposed model, the weight w(vi) of vertex vi becomes,

w(vi) =
1

2

∑
vj∈Adj(vi)

w(eij)

=
∑

uh∈Pins(ni)

w(uh)

dh
. (3.7)

Consider an internal hypergraph node uh of part Uk of ΠU (H). Since all graph
vertices corresponding to the nets that connect uh are in part Vk of ΠV S(G), uh will
contribute w(uh) to W (Vk). Consider a boundary hypergraph node uh of part Uk
with an external degree δh < dh , i.e., uh is connected by δh cut nets. Thus, uh will
contribute by an amount of (1−δh/dh)w(uh) to W (Vk) instead of w(uh). So, vertex-
part weight W (Vk) of Vk in ΠV S(G) will be less than the actual node-part weight
W (Uk) of Uk in ΠU (H). As the vertex-part weights of different parts of ΠV S(G) will
involve similar errors, the proposed method can be expected to produce a sufficiently
good balance on the node-part weights of ΠU (H).

The free nodes can easily be exploited to improve the balance during the com-
pletion of partial node partition. For the cut-net metric in (2.8), we perform free-
node-to-part assignment after obtaining a K -way GPVS, since arbitrary assignments
of free nodes do not disturb the cutsize by Corollary 2. However, for the connectivity
metric in (2.9), free-node-to-part assignment needs special attention if it is performed
after obtaining a K -way GPVS. According to Theorem 2, arbitrary assignments of
free nodes may increase the connectivity of cut nets. So, for the connectivity cutsize
metric, we perform free-node-to-part assignment after each RB step to improve the

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

nnz = 48

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

nnz = 77

(b)

Fig. 3.4. (a) A sample matrix A whose row-net hypergraph representation HA is equal to the
sample hypergraph H given in Figure 3.1(a) and (b) the matrix Z = AAT .

balance. Note that free-node-to-part assignment performed in this way does not in-
crease the connectivity of cut nets in the RB-GPVS-based HP by Corollary 3. For both
cutsize metrics, the best-fit-decreasing heuristic [43] used in solving the bin-packing
problem is adapted to obtain a complete node partition/bipartition. Free nodes are
assigned to parts in decreasing weight, where the best-fit criterion corresponds to
assigning a free node to a part that currently has the minimum weight. Initial part
weights are taken as the weights of the two parts in partial node bipartition.

3.3. Matrix Theoretical View of the Relation Between HP and GPVS.
We will first briefly discuss the row-net and column-net models we proposed for rep-
resenting rectangular as well as symmetric and nonsymmetric square matrices in our
earlier work [7, 8, 38, 37]. These two models are duals: the row-net representation
of a matrix is equal to the column-net representation of its transpose. Here, we only
discuss the row-net model for permuting a matrix A into a primal singly-bordered
block-diagonal (SB) form, whereas the column-net model can be used for permuting
A into a dual SB form. In the row-net hypergraph model, an M×N matrix A=(aij)
is represented as a hypergraph HA =(U ,N) on N nodes and M nets with the num-
ber of pins equal to the number of nonzeros in matrix A . Node and net sets U and
N correspond, respectively, to the columns and rows of A . There exist one net ni
and one node uj for each row i and column j , respectively. Net ni⊆ U contains the
nodes corresponding to the columns that have a nonzero entry in row i , i.e., uj ∈ ni
if and only if aij 6= 0. That is, Pins(ni) represents the set of columns that have a
nonzero in row i of A , and in a dual manner Nets(uj) represents the set of rows that
have a nonzero in column j of A . Figure 3.4(a) shows a 15 × 18 matrix A whose
row-net hypergraph representation HA is equal to the sample hypergraph H given
in Figure 3.1(a).

Let GNIG(HA)=(V, E) denote the NIG model for the row-net hypergraph repre-
sentation HA =(U ,N) of matrix A . By definition of the NIG model, the vertices of
GNIG will represent the rows of A , and eij ∈E if and only if Pins(ni)∩Pins(nj) 6= ∅ .
Since Pins(ni) represents the set of columns that have a nonzero in row i of A ,

Hypergraph Partitioning via GPVS 15

4 5 9 14 2 6 10 13 3 7 11 12 1 8 15

4

5

9

14

2

6

10

13

3

7

11

12

1

8

15

nnz = 77
vol = 22 imbal = [−100.0%, 300.0%]

(a)

1 4 8 9 14 16 18 2 5 6 11 13 3 7 10 12 15 17

4

5

9

14

2

6

10

13

3

7

11

12

1

8

15

nnz = 48
vol = 22 imbal = [−100.0%, 300.0%]

(b)

Fig. 3.5. (a) A 3-way DB form of the AAT matrix, (b) SB form ASB of A shown in
Figure 3.4(a).

Pins(ni) ∩ Pins(nj) 6= ∅ corresponds to the condition that rows i and j of A , rep-
resented as ri and rj , respectively, have a nonzero in at least one common column.
Let Z=(zij) denote the M ×M matrix Z=AAT , and 〈 . 〉 denote the inner-product
operator. Since zij = 〈 ri, rTj 〉 , zij will be nonzero if and only if eij ∈ E . Hence,
the sparsity pattern of symmetric matrix Z will correspond to the adjacency matrix
representation of GNIG . In other words, GNIG will be equivalent to the standard
graph representation of a symmetric matrix Z , i.e., GNIG(HA)≡GAAT . Note that
although vertex vi of GNIG represents only row i of A , it represents both row i and
column i of AAT in GAAT .

Figure 3.4(b) shows the 15× 15 matrix Z = AAT . Note that the standard graph
representation of Z is equivalent to the NIG representation GNIG(HA) of HA . As has
long been used for nested dissection ordering for sparsity preserving factorizations, the
problem of transforming a symmetric matrix into a doubly-bordered block-diagonal
(DB) form through symmetric row/column permutation can be modeled as a GPVS
problem on its standard graph representation. So, Figure 3.5(a) shows a 3-way DB
form of the AAT matrix induced by the 3-way GPVS ΠV S(G) of GNIG(HA) shown
in Figure 3.4(b). Recall that the 3-way partition ΠU (HA) shown in Figure 3.2(b) is
induced by ΠV S(G). Hence, ΠV S(G) induces the same SB form ASB of A as shown
in Figure 3.5(b).

3.4. Multilevel implementation of GPVS-based HP formulation. The
state-of-the-art graph and hypergraph partitioning tools that adopt the multilevel
framework, consist of three phases: coarsening , initial partitioning , and uncoarsen-
ing. In the first phase, a multilevel coarseining is applied starting from the original
graph/hypergraph by adopting various matching heuristics until the number of ver-
tices in the coarsened graph/hypergraph reduces below a predetermined threshold
value. Coarsening corresponds to coalescing highly interacting vertices to supern-
odes. In the second phase, a partition is obtained on the coarsest graph/hypergraph
using various heuristics including FM, which is an iterative refinement heuristic pro-
posed for graph/hypergraph partitioning by Fiduccia and Mattheyses [20] as a faster

16

implementation of the KL algorithm proposed by Kernighan and Lin [32]. In the
third phase, the partition found in the second phase is successively projected back
towards the original graph/hypergraph by refining the projected partitions on the in-
termediate level uncoarserned graphs/hypergraphs using various heuristics including
FM.

One of the most important applications of GPVS is George’s nested–dissection
algorithm [21, 22], which has been widely used for reordering of the rows/columns of
a symmetric, sparse, and positive definite matrix to reduce fill in the factor matrices.
Here, GPVS is defined on the standard graph model of the given symmetric matrix.
The basic idea in the nested dissection algorithm is to reorder a symmetric matrix
into a 2-way DB form so that no fill can occur in the off-diagonal blocks. The DB
form of the given matrix is obtained through a symmetric row/column permutation
induced by a 2-way GPVS. Then, both diagonal blocks are reordered by applying the
dissection strategy recursively. The performance of the nested-dissection reordering
algorithm depends on finding small vertex separators at each dissection step.

In this work, we adapted and modified the onmetis ordering code of MeTiS [27]
for implementing our GPVS-based HP formulation. onmetis utilizes the RB paradigm
for obtaining multiway GPVS. Since K is not known in advance for ordering applica-
tions, recursive bipartitioning operations continue until the weight of a part becomes
sufficiently small. In our implementation, we terminate the recursive bipartitioning
process whenever the number of parts becomes K.

The separator refinement scheme used in the uncoarsening phase of onmetis con-
siders vertex moves from vertex separator ΠV S(G) to both V1 and V2 in ΠV S =
{V1,V2;VS} . During these moves, onmetis uses the following feasibility constraint,
which incorporates the size of the separator in balancing, i.e.,

max{W (V1),W (V2)} ≤ (1 + ε)
W (V1)+W (V2)+W (VS)

2
= Wmax. (3.8)

However, this may become a loose balancing constraint compared to (2.2) for relatively
large separator sizes which is typical during refinements of coarser graphs. This loose
balancing constraint is not an important concern in onmetis , because it is targeted
for fill-reducing sparse matrix ordering which is not very sensitive to the imbalance
between part sizes. Nevertheless, this scheme degrades the load balancing quality
of our GPVS-based HP implementation, where load balancing is more important in
the applications for which HP is utilized. We modified onmetis by computing the
maximum part weight constraint as

Wmax = (1 + ε)
W (V1) +W (V2)

2
. (3.9)

at the beginning of each FM pass, whereas onmetis computes Wmax according to (3.8)
once for all FM passes, in a level. Furthermore, onmetis maintains only one value for
each vertex which denotes both the weight and the cost of the vertex. We added a
second field for each vertex to hold the weight and the cost of the vertex separately.
The weights and the costs of vertices are accumulated independently during vertex
coalescings performed by matchings at the coarsening phases. Recall that weight
values are used for maintaining the load balancing criteria, whereas cost values are
used for computing the size of the separator. That is, FM gains of the separator
vertices are computed using the cost values of those vertices.

The GPVS-based HP implementation obtained by adapting onmetis as described
in this subsection will be referred to as onmetisHP .

Hypergraph Partitioning via GPVS 17

4. Experimental Results. We test the performance of our GPVS-based HP
formulation by partitioning matrices from the linear-programming (LP) and the posi-
tive definite (PD) matrix collections of the University of Florida matrix collection [17].
Matrices in the latter collection are square and symmetric, whereas the matrices in
the former collection are rectangular. The row-net hypergraph models [8, 12] of the
test matrices constitute our test set. In these hypergraphs, nets are associated with
unit cost. To show the validity of our GPVS-based HP formulation, test hypergraphs
are partitioned by both PaToH and onmetisHP and default parameters are utilized
in both tools. In general, the maximum imbalance ratio ε was set to be 10%.

We excluded small matrices that have less than 1000 rows or 1000 columns. In
the LP matrix collection, there were 190 large matrices out of 342 matrices. Out of
these 190 large matrices, 5 duplicates, 1 extremely large matrix and 5 matrices for
which NIG representations are extremely large were excluded. We also excluded 26
outlier matrices which yield large separators1 to avoid skewing the results. Thus, 153
test hypergraphs are used from the LP matrix collection. In the PD matrix collec-
tion, there were 170 such large matrices out of 223 matrices. Out of these 170 large
matrices, 2 duplicates, 2 matrices for which NIG representations are extremely large
and 7 matrices with large separators were excluded. Thus, 159 test hypergraphs are
used from the PD matrix collection. We experimented with K -way partitioning of test
hypergraphs for K = 2, 4, 8, 16, 32, 64, and 128. For a specific K value, K -way parti-
tioning of a test hypergraph constitutes a partitioning instance. For the LP collection,
instances in which min{|U|, |N |} < 50K are discarded as the parts would become
too small. So, 153, 153, 153, 153, 135, 100, and 65 hypergraphs are partitioned
for K = 2, 4, 8, 16, 32, 64, and 128, respectively, for the LP collection. Similarly for
the PD collection, instances in which |U| < 50K are discarded. So, 159, 159, 159,
159, 145, 131, and 109 hypergraphs are partitioned for K = 2, 4, 8, 16, 32, 64, and
128, respectively for the PD collection. In this section, we summarize our findings
in these experiments. Please refer to [31] for detailed experimental results for each
partitioning instance.

In our first set of experiments, the hypergraphs obtained from the LP matrix col-
lection are used for permuting the matrices into singly-bordered (SB) block-angular-
form for coarse-grain parallelization of linear-programming applications [3]. Here,
minimizing the cutsize according to the cut-net metric (2.4) corresponds to minimiz-
ing the size of the row border in the induced SB form. In these applications, nets
either have unit weights or weights that are equal to the number of nonzeros in the
respective rows. In the former case, net balancing corresponds to balancing the row
counts of the diagonal blocks, whereas in the latter case, net balancing corresponds
to balancing the nonzero counts of the diagonal blocks. Experimental comparisons
are provided only for the former case, because PaToH does not support different cost
and weight associations to nets.

In our second set of experiments, the hypergraphs obtained from the PD ma-
trix collection are used for minimizing communication overhead in a column-parallel
matrix-vector multiply algorithm in iterative solvers. Here, minimizing the cutsize
according to the connectivity metric (2.5) corresponds to minimizing the total com-
munication volume when the point-to-point inter-processor communication scheme is
used [8]. Minimizing the cutsize according to the cut-net metric (2.4) corresponds
to minimizing the total communication volume when the collective communication
scheme is used [12]. In these applications, nodes have weights that are equal to the

1Here, a separator is said to be large if it includes more than 33% of all nets.

18

number of nonzeros in the respective columns. So, balancing part weights corresponds
to computational load balancing.

In the following tables, the performance figures are computed and displayed as
follows. Since both PaToH and onmetisHP tools involve randomized heuristics, 10
different partitions are obtained for each partitioning instance and the geometric aver-
age of the 10 resultant partitions are computed as the representative results for both
HP tools on the particular partitioning instance. For each partitioning instance, the
cutsize value is normalized with respect to the total number of nets in the respective
hypergraph. Recall that all test hypergraphs have unit-cost nets. So, for the cut-net
metric, these normalized cutsize values show the fraction of the cut nets. For the con-
nectivity metric, these normalized cutsize values show the average net connectivity.
For each partitioning instance, the running time of PaToH is normalized with respect
to that of onmetisHP , thus showing the speedup obtained by onmetisHP for that
partitioning instance. These normalized cutsize values and speedup values as well as
percent load imbalance values are summarized in the tables by taking the geometric
averages for each K value.

Table 4.1
Performance averages on the LP matrix collection for the cut-net metric with net balancing.

PaToH onmetisHP
K cutsize %LI cutsize %LI speedup
2 0.02 1.2 0.03 0.3 2.04
4 0.02 1.9 0.05 2.6 2.45
8 0.07 3.1 0.09 6.9 2.64

16 0.09 5.2 0.14 13.0 2.78
32 0.13 8.8 0.18 23.1 2.83
64 0.15 11.5 0.21 27.8 2.83

128 0.16 13.5 0.21 31.3 2.76

Table 4.1 displays overall performance averages of onmetisHP compared to those
of PaToH for the cut-net metric (see (2.8)) with net balancing on the LP matrix
collection. As seen in Table 4.1, onmetisHP obtains hypergraph partitions of com-
parable cutsize quality with those of PaToH . However, load balancing quality of
partitions produced by onmetisHP is worse than those of PaToH , especially with
increasing K . As seen in the table, onmetisHP runs significantly faster than PaToH
for each K . For example, onmetisHP runs 2.83 times faster than PaToH for 32-way
partitionings on the average.

Table 4.2
Performance averages on the PD matrix collection for the cut-net metric with node balancing.

PaToH onmetisHP
K cutsize %LI cutsize exp%LIp act%LIp act%LIc speedup
2 0.01 0.1 0.01 0.2 0.2 0.1 1.40
4 0.03 0.3 0.03 0.9 1.5 1.1 1.75
8 0.05 0.4 0.05 2.8 3.7 2.7 1.96

16 0.08 0.6 0.08 6.7 7.4 5.4 1.98
32 0.12 0.9 0.12 13.4 12.8 9.2 2.17
64 0.17 1.2 0.16 22.1 19.8 13.5 2.27

128 0.25 1.6 0.24 32.5 28.8 17.9 2.25

Table 4.2 displays overall performance averages of onmetisHP compared to those
of PaToH for the cut-net metric with node balancing on the PD matrix collection. In
the table, exp%LIp and act%LIp respectively denote the expected and actual percent

Hypergraph Partitioning via GPVS 19

load imbalance values for the partial node partitions of the hypergraphs induced by
K -way GPVS. act%LIc denotes the actual load imbalance values for the complete
node partitions obtained after free-node-to-part assignment. The small discrepancies
between the exp%LIp and act%LIp values show the validity of the approximate
weighting scheme proposed in Section 3.2 for the vertices of the NIG. As seen in
the table, for each K , the act%LIc value is considerably smaller than the act%LIp
value. This experimental finding confirms the effectiveness of the free-node-to-part
assignment scheme mentioned in Section 3.2. As seen in Table 4.2, onmetisHP obtains
hypergraph partitions of comparable cutsize quality with those of PaToH . However,
load balancing quality of partitions produced by onmetisHP is considerably worse
than those of PaToH . As seen in the table, onmetisHP runs considerably faster
than PaToH for each K .

Table 4.3
Comparison of accurate and overcautious separator-vertex splitting implementations with aver-

ages on the PD matrix collection for the connectivity metric with node balancing.

overcautious / accurate
K cutsize %LI speedup
2 1.00 0.63 1.07
4 1.02 0.79 1.13
8 1.10 0.79 1.16

16 1.29 0.70 1.19
32 1.56 0.64 1.21
64 1.84 0.69 1.22

128 2.09 0.60 1.21

Table 4.3 is constructed based on the PD matrix collection to show the validity of
the accurate vertex splitting formulation proposed in Section 3.2.1 for the connectiv-
ity cutsize metric (see Eq. (2.9)). In this table, speedup, cutsize and load imbalance
values of onmetisHP that uses the straightforward (overcautious) separator-vertex
splitting implementation are normalized with respect to those of onmetisHP that
uses the accurate implementation. In the straightforward implementation, free-node-
to-part assignment is performed after obtaining a K -way GPVS, since hypergraphs
are not carried through the RB process. Free nodes are assigned to parts in decreas-
ing weight, where the best-fit criterion corresponds to assigning a free node to a part
which increases connectivity cutsize by the smallest amount with ties broken in favor
of the part with minimum weight. As seen in the table, the overcautious implemen-
tation leads to slightly better load balance than accurate implementation, because
overcautious implementation performs free-node-to-part assignment on the K -way
partial node partition induced by the K -way GPVS. As also seen in the table, the
overcautious implementation, as expected, leads to slightly better speedup than the
accurate implementation. However, the accurate implementation leads to significantly
less cutsize values.

Table 4.4 displays overall performance averages of onmetisHP compared to those
of PaToH for the connectivity metric with node balancing on the PD matrix col-
lection. In contrast to Table 4.2, load imbalance values are not displayed for partial
node partitions in Table 4.4, because free-node-to-part assignments are performed
after each 2-way GPVS operation for the sake of accurate implementation of the
separator-vertex splitting method as mentioned in Section 3.2. So, %LI values dis-
played in Table 4.4 show the actual percent imbalance values for the K -way node
partitions obtained. As seen in Table 4.4, similar to results of Table 4.2, onmetisHP

20

Table 4.4
Performance averages on the PD matrix collection for the connectivity metric with node bal-

ancing.

PaToH onmetisHP
K cutsize %LI cutsize %LI speedup
2 1.03 0.1 1.03 0.2 1.29
4 1.08 0.3 1.08 0.8 1.50
8 1.15 0.5 1.15 1.7 1.61

16 1.26 0.7 1.25 4.1 1.63
32 1.37 1.0 1.36 7.9 1.61
64 1.49 1.5 1.47 11.8 1.60

128 1.63 1.9 1.60 16.5 1.54

obtains hypergraph partitions of comparable cutsize quality with those of PaToH ,
whereas load balancing quality of partitions produced by onmetisHP is considerably
worse than those of PaToH . As seen in Table 4, onmetisHP still runs considerably
faster than PaToH for each K for the connectivity metric. However, the speedup
values in Table 4.4, are considerable smaller compared to those displayed in Table 4.2,
which is due to the fact that onmetisHP carries hypergraphs during the RB process
for the sake of accurate implementation of the separator-vertex splitting method as
mentioned in Section 3.2.

A common property of Tables 4.1, 4.2, and 4.4, is the increasing speedup of
onmetisHP compared to PaToH with increasing K values. This experimental find-
ing stems from the fact that the initial NIG construction overhead amortizes with in-
creasing K . Another common property of Tables 4.1, 4.2, and 4.4, is that onmetisHP
runs significantly faster than PaToH , while producing partitions of comparable cut-
size quality with, however, worse load balancing quality. These experimental findings
justify our GPVS-based hypergraph partitioning formulation for effective paralleliza-
tion of applications in which computational balance definition is not very precise and
preprocessing overhead due to partitioning overhead is important.

5. Conclusions. We have presented how the hypergraph partitioning problem
can be efficiently and effectively solved through finding vertex separators on the net
intersection graph representation of a hypergraph. Our empirical study on a wide set
of test matrices showed that runtimes can be as much as 4.17 times faster, where the
cutsize quality is preserved on average (and improved in many cases), while balance
was achieved when the number of parts is small and remained acceptable when the
number of parts is large. Moreover, we proposed techniques that can trade off cutsize
and runtime against balance, showing that balance can be achieved even when the
number of parts is very large. Overall results prove that the proposed hypergraph
partitioning through vertex separators on graphs is ideal for applications where bal-
ance is not well-defined, which is the main motivation for our work, and competitive
for applications where balance is important.

We believe that the success of the proposed methods point to several future re-
search directions. First, better vertex weighting schemes to approximate the node
balance is an area that can make a significant impact. We believe exploiting domain
specific information or devising techniques that can apply to certain classes of graphs,
as opposed to constructing generic approximations that can work for all graphs, is a
promising avenue to explore. Secondly, the algorithms we have used in this paper,
were only slightly adjusted for the particular problem we were solving. There is a
lot of room for improvements in algorithms for finding vertex separators with bal-

Hypergraph Partitioning via GPVS 21

anced hypergraph partitions, and we believe these algorithms can be designed and
implemented within the existing partitioning graph partitioning frameworks, which
means strong algorithmic ideas can be translated into effective software tools with rel-
atively little effort. Finally, this paper is only an example of the growing importance
of graph partitioning and the need for more flexible models for graph partitioning.
Graph partitioning now is an internal step for divide-and-conquer based methods,
whose popularity will only increase with the growing problem sizes. As such, require-
ments for graph partitioning will keep growing and broadening. While, the state of
the art for graph partitioning has drastically improved from the days of merely mini-
mizing the number of cut edges, we believe there is still a lot of room for growth for
more general models for graph partitioning.

REFERENCES

[1] K. Akbudak, E. Kayaaslan, and C. Aykanat, Cache locality exploiting methods and models
for sparse matrix-vector multiplication, Technical Report, (2010).

[2] C. J. Alpert and A. B. Kahng, Recent directions in netlist partitioning: A survey, VLSI
Journal, 19 (1995), pp. 1–81.

[3] C. Aykanat, A. Pınar, and U. V. Çatalyürek, Permuting sparse rectangular matrices into
block-diagonal form, SIAM Journal on Scientific Computing, 26 (2004), pp. 1860–1879.

[4] R. H. Bisseling and I. Flesch, Mondriaan sparse matrix partitioning for attacking cryptosys-
tems by a parallel block Lanczos algorithm: a case study, Parallel Comput., 32 (2006),
pp. 551–567.

[5] T. N. Bui and C. Jones, Finding good approximate vertex and edge partitions is NP-hard,
Infomation Processing Letters, 42 (1992), pp. 153–159.

[6] B. B. Cambazoglu and C. Aykanat, Hypergraph-partitioning-based remapping models for
image-space-parallel direct volume rendering of unstructured grids, IEEE Transactions on
Parallel and Distributed Systems, 18 (2007), pp. 3–16.

[7] U. V. Çatalyürek and C. Aykanat, Decomposing irregularly sparse matrices for parallel
matrix-vector multiplications, in Proceedings of 3rd International Symposium on Solving
Irregularly Structured Problems in Parallel, Irregular’96, vol. 1117 of Lecture Notes in
Computer Science, Springer-Verlag, 1996, pp. 75–86.

[8] , Hypergraph-partitioning based decomposition for parallel sparse-matrix vector multipli-
cation, IEEE Transactions on Parallel and Distributed Systems, 10 (1999), pp. 673–693.

[9] , PaToH: A Multilevel Hypergraph Partitioning Tool, Version 3.0, Bilkent University,
Department of Computer Engineering, Ankara, 06533 Turkey. PaToH is available at http:
//bmi.osu.edu/~umit/software.htm, 1999.

[10] , A fine-grain hypergraph model for 2D decomposition of sparse matrices, in Proceed-
ings of 15th International Parallel and Distributed Processing Symposium (IPDPS), San
Francisco, CA, April 2001.

[11] , A hypergraph-partitioning approach for coarse-grain decomposition, in ACM/IEEE
SC2001, Denver, CO, November 2001.

[12] U. V. Çatalyürek, C. Aykanat, and B. Ucar, On two-dimensional sparse matrix partition-
ing: Models, methods, and a recipe, SIAM Journal on Scientific Computing, 32 (2010),
pp. 656–683.

[13] P. K. Chan, D. F. Schlag, and J. Y. Zien, Spectral K-way ratio-cut partitioning and cluster-
ing, in Proceedings of the 30th Design Automation Conference, ACM/IEEE, 1993, pp. 749–
754.

[14] C. Chang, T. Kurc, A. Sussman, U. V. Çatalyürek, and J. Saltz, A hypergraph-based
workload partitioning strategy for parallel data aggregation, in Proceedings of the Eleventh
SIAM Conference on Parallel Processing for Scientific Computing, SIAM, Mar. 2001.

[15] J. Cong, L. Hagen, and A. B. Kahng, Net partitions yield better module partitions, in
Proceedings of 29th ACM/IEEE Design Automation Conference, 1992, pp. 47–52.

[16] J. Cong, W. Labio, and N. Shivakumar, Multi-way VLSI circuit partitioning based on dual
net representation, in Proceedings of IEEE International Conference on Computer-Aided
Design, 1994, pp. 56–62.

[17] T. Davis, The University of Florida sparse matrix collection, ACM Transactions on Mathe-
matical Software, 38 (2011).

[18] K. Devine, E. Boman, R. Heaphy, R. Bisseling, and U. Catalyurek, Parallel hypergraph

22

partitioning for scientific computing, in Proceedings of 20th International Parallel and
Distributed Processing Symposium (IPDPS), IEEE, 2006.

[19] N. Dingle, P. Harrison, and W. Knottenbelt, Uniformization and Hypergraph Partition-
ing for the Distributed Computation of Response Time Densities in Very Large Markov
Models, Journal of Parallel and Distributed Computing, 64 (2004), pp. 908–920.

[20] C. M. Fiduccia and R. M. Mattheyses, A linear-time heuristic for improving network par-
titions, in Proceedings of the 19th ACM/IEEE Design Automation Conference, 1982,
pp. 175–181.

[21] A. George and J. W. H. Liu, Computer solution of large sparse positive definite systems,
Prentice-Hall, 1981.

[22] J. A. George, Nested dissection of a regular finite element mesh, SIAM Journal on Numerical
Analysis, 10 (1973), pp. 345–363.

[23] G. Hachtel, A. Newton, and A. Sangiovanni-Vincentelli, An algorithm for optimal PLA
folding, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
1 (1982), pp. 63–77.

[24] S. W. Hadley, B. L. Mark, and A. Vanelli, An efficient eigenvector approach for finding
netlist partitions, IEEE Transactions on Computer-Aided Design, 11 (1992), pp. 885–892.

[25] E. Ihler, D. Wagner, and F. Wagner, Modeling hypergraphs by graphs with the same mincut
properties, Information Processing Letters, 45 (1993), pp. 171–175.

[26] A. B. Kahng, Fast hypergraph partition, in Proceedings of the 26th ACM/IEEE Design Au-
tomation Conference, 1989, pp. 762–766.

[27] G. Karypis and V. Kumar, MeTiS A Software Package for Partitioning Unstructured Graphs,
Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices Version
4.0, University of Minnesota, Department of Comp. Sci. and Eng., Army HPC Research
Center, Minneapolis, 1998.

[28] G. Karypis, V. Kumar, R. Aggarwal, and S. Shekhar, hMeTiS A Hypergraph Partitioning
Package Version 1.0.1, University of Minnesota, Department of Comp. Sci. and Eng.,
Army HPC Research Center, Minneapolis, 1998.

[29] K. Kaya and C. Aykanat, Iterative-improvement-based heuristics for adaptive scheduling
of tasks sharing files on heterogeneous master-slave environments, IEEE Trans. Parallel
Distrib. Syst., 17 (2006), pp. 883–896.

[30] K. Kaya, B. Uçar, and C. Aykanat, Heuristics for scheduling file-sharing tasks on het-
erogeneous systems with distributed repositories, J. Parallel Distrib. Comput., 67 (2007),
pp. 271–285.

[31] E. Kayaaslan, A. Pinar, U. V. Çatalyürek, and C. Aykanat, Hypergraph partitioning
through vertex separators on graphs, Tech. Report BU-CE-1017, Bilkent University, Com-
puter Engineering Department, Sep 2010. Also available at http://bmi.osu.edu/hpc/

publications.html.
[32] B. W. Kernighan and S. Lin, An efficient heuristic procedure for partitioning graphs, The

Bell System Technical Journal, 49 (1970), pp. 291–307.
[33] G. Khanna, N. Vydyanathan, T. Kurc, U. Catalyurek, P. Wyckoff, J. Saltz, and P. Sa-

dayappan, A hypergraph partitioning based approach for scheduling of tasks with batch-
shared I/O, in Proceedings of the 5th IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid 2005), May 2005.

[34] E. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart, and Win-
ston, 1976.

[35] C. E. Leiserson and J. G. Lewis, Orderings for parallel sparse symmetric matrix factor-
ization, in Third SIAM Conference on Parallel Processing for Scientific Computing, 1987,
pp. 27–31.

[36] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, Willey–Teubner,
Chichester, U.K., 1990.

[37] A. Pınar and C. Aykanat, An effective model to decompose linear programs for parallel solu-
tion, in Proceedings of the Third International Workshop on Applied Parallel Computing,
PARA’96, vol. 1184 of Lecture Notes in Computer Science, Springer-Verlag, 1997, pp. 592–
601.

[38] A. Pınar, U. V. Çatalyürek, C. Aykanat, and M. Pınar, Decomposing linear programs for
parallel solution, Lecture Notes in Computer Science, 1041 (1996), pp. 473–482.

[39] A. Pinar, E. Chow, and A. Pothen, Combinatorial techniques for constructing sparse null-
space bases, Electronic Transactions on Numerical Analysis, 22 (2006), pp. 122–145. special
volume on saddle point problems: numerical solution and applications.

[40] A. Pinar and B. Hendrickson, Partitioning for complex objectives, in Parallel and Distributed
Processing Symposium., Proceedings 15th International, apr 2001, pp. 1232 –1237.

Hypergraph Partitioning via GPVS 23

[41] A. Pothen and C. J. Fan, Computing the block triangular form of a sparse matrix, ACM
Transactions on Mathematical Software, 16 (1990), pp. 303–324.

[42] A. Pothen, H. D. Simon, and K.-P. Liou, Partitioning sparse matrices with eigenvectors of
graphs, SIAM Journal on Matrix Analysis and Applications, 11 (1990), pp. 430–452.

[43] S. Sahni, General techniques for combinatorial approximation, Operations Research, 25 (1977),
pp. 920–936.

[44] M. M. Strout and P. D. Hovland, Metrics and models for reordering transformations, in
Proc. of the Second ACM SIGPLAN Workshop on Memory System Performance (MSP04),
Washington DC., June 2004, ACM, pp. 23–34.

[45] G. Szederknyi, Computing sparse and dense realizations of reaction kinetic systems, Journal
of Mathematical Chemistry, 47 (2010), pp. 551–568. 10.1007/s10910-009-9525-5.

[46] A. Trifunovic and W. J. Knottenbelt, Parkway 2.0: A parallel multilevel hypergraph parti-
tioning tool, in Proc. 19th International Symposium on Computer and Information Sciences
(ISCIS 2004), vol. 3280 of LNCS, Springer, 2004, pp. 789–800.

[47] A. Trifunovic and W. J. Knottenbelt, A general graph model for representing exact com-
munication volume in parallel sparse matrix-vector multiplication, in 21st International
Symposium on Computer and Information Sciences (ISCIS 2006), November 2006, pp. 813–
824.

[48] B. Uçar and C. Aykanat, Encapsulating multiple communication-cost metrics in partition-
ing sparse rectangular matrices for parallel matrix-vector multiplies, SIAM Journal on
Scientific Computing, 26 (2004), pp. 1837–1859.

[49] , Partitioning sparse matrices for parallel preconditioned iterative methods, SIAM Jour-
nal on Scientific Computing, 29 (2007), pp. 1683–1709.

[50] , Revisiting hypergraph models for sparse matrix partitioning, SIAM Review, 49 (2007),
pp. 595–603.

[51] B. Uçar, C. Aykanat, M. C. Pinar, and T. Malas, Parallel image restoration using surrogate
constraint methods, J. Parallel Distrib. Comput., 67 (2007), pp. 186–204.

[52] B. Vastenhouw and R. H. Bisseling, A two-dimensional data distribution method for parallel
sparse matrix-vector multiplication, SIAM Review, 47 (2005), pp. 67–95.

[53] v. Vrba, H. Espeland, P. Halvorsen, and C. Griwodz, Limits of work-stealing scheduling,
Job Scheduling Strategies for Parallel Processing: 14th International Workshop, JSSPP
2009, Rome, Italy, May 29, 2009. Revised Papers, (2009), pp. 280–299.

[54] A. N. Yzelman and R. H. Bisseling, Cache-oblivious sparse matrix-vector multiplication by
using sparse matrix partitioning methods, SIAM J. Sci. Comput., 31 (2009), pp. 3128–3154.

